Subunit assembly and guanine nucleotide exchange activity of eukaryotic initiation factor-2B expressed in Sf9 cells.
نویسندگان
چکیده
Eukaryotic initiation factor-2B (eIF-2B) is a guanine nucleotide exchange factor (GEF) that plays a key role in the regulation of protein synthesis. In this study, we have used the baculovirus-infected Sf9 insect cell system to express and characterize the five dissimilar subunits of rat eIF-2B. GEF activity was detected in extracts of Sf9 cells expressing the epsilon-subunit alone and was greatly increased when all five subunits were coexpressed. In addition, high GEF activity was observed in extracts containing a four-subunit complex lacking the alpha-subunit. Assembly of an eIF-2B holoprotein was confirmed by coimmunoprecipitation of all five subunits. Gel filtration chromatography revealed that recombinant eIF-2B had the same molecular mass as eIF-2B purified from rat liver and that it did indeed possess GEF activity. Phosphorylation of the substrate eIF-2 inhibited the GEF activity of the five-subunit eIF-2B; this inhibition required the eIF-2B alpha-subunit. The results demonstrate that eIF-2Balpha functions as a regulatory subunit that is not required for GEF activity, but instead mediates the regulation of eIF-2B by substrate phosphorylation. Furthermore, eIF-2Bepsilon is necessary and is perhaps sufficient for GEF activity in vitro.
منابع مشابه
eIF2B is a decameric guanine nucleotide exchange factor with a γ2ε2 tetrameric core
eIF2B facilitates and controls protein synthesis in eukaryotes by mediating guanine nucleotide exchange on its partner eIF2. We combined mass spectrometry (MS) with chemical cross-linking, surface accessibility measurements and homology modelling to define subunit stoichiometry and interactions within eIF2B and eIF2. Although it is generally accepted that eIF2B is a pentamer of five non-identic...
متن کاملCloning and expression of cDNAs for the beta subunit of eukaryotic initiation factor-2B, the guanine nucleotide exchange factor for eukaryotic initiation factor-2.
A key control point in the initiation of protein synthesis in mammalian cells is the recycling of eukaryotic initiation factor (eIF)-2 by the guanine nucleotide exchange factor eIF-2B. In mammalian cells, eIF-2B is a complex of five different subunits termed epsilon, delta, gamma, beta and alpha. To clone cDNAs for the beta subunit of rabbit eIF-2B, amino acid sequence data was first obtained a...
متن کاملClues to the mechanism of action of eIF2B, the guanine-nucleotide-exchange factor for translation initiation.
A variety of cellular processes rely on G-proteins, which cycle through active GTP-bound and inactive GDP-bound forms. The switch between these states is commonly regulated by GEFs (guanine-nucleotide-exchange factors) and GAPs (GTPase-activating proteins). Although G-proteins have structural similarity, GEFs are very diverse proteins. A complex example of this system is seen in eukaryotic tran...
متن کاملThe alpha subunit of eukaryotic initiation factor 2B (eIF2B) is required for eIF2-mediated translational suppression of vesicular stomatitis virus.
Eukaryotic translation initiation factor 2B (eIF2B) is a heteropentameric guanine nucleotide exchange factor that converts protein synthesis initiation factor 2 (eIF2) from a GDP-bound form to the active eIF2-GTP complex. Cellular stress can repress translation initiation by activating kinases capable of phosphorylating the alpha subunit of eIF2 (eIF2α), which sequesters eIF2B to prevent exchan...
متن کاملHomologous segments in three subunits of the guanine nucleotide exchange factor eIF2B mediate translational regulation by phosphorylation of eIF2.
eIF2B is a five-subunit guanine nucleotide exchange factor that is negatively regulated by phosphorylation of the alpha subunit of its substrate, eIF2, leading to inhibition of translation initiation. To analyze this regulatory mechanism, we have characterized 29 novel mutations in the homologous eIF2B subunits encoded by GCD2, GCD7, and GCN3 that reduce or abolish inhibition of eIF2B activity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 272 19 شماره
صفحات -
تاریخ انتشار 1997